DCS: Black Shark 2

Home > Products > Helicopters > DCS: Black Shark 2

DCS: Black Shark 2 is a simulation of the Russian Ka-50 attack helicopter and the next entry in the Digital Combat Simulator combat series. DCS: Black Shark 2 is a greatly improved version of the original DCS: Black Shark that brings many new features.

The Ka-50 "Black Shark" is a unique and deadly single-seat, Russian attack helicopter that has seen combat in the Northern Caucasus. It combines a high performance dual rotor system with a deadly weapons payload of guided missiles, rockets, bombs, and a 30mm cannon. The Ka-50 is also unique in that it has an ejection seat.

Release: 11/02/2011

To conduct radio navigation, the Ka-50 pilot can use the ARK-22 ADF and the ABRIS AMMS.

The ARK-22 ADF controls the Radio Magnetic Indicator (RMI) needle on the Horizontal Situation Indicator (HSI), pointing it in the direction of the transmitting signal. Using the ADF, the pilot can select one of eight preset channels, each of which stores two radio frequencies. Upon reaching the transmitter of the currently selected frequency, the ADF automatically begins homing on the second and vice versa. Alternatively, the pilot can manually select which of the two frequencies on the selected channel to home on. For example, the first frequency in a given ADF channel may be set to home on the airfield outer locator beacon and the second on the inner locator beacon, etc. The pilot can verify selection of the correct beacon by configuring the ADF to provide an audio transmission of the beacon's ID. While in real life the frequencies for each ADF channel are set by ground personnel, the DCS player can edit these in the ADF configuration files outside the simulation.

FPL
HSI

The ARK-22 ADF can also be slaved to the R-800L1 UHF radio. In this case, the RMI needle on the HSI is directed toward the transmitter on the frequency currently selected for the R-800L1 radio. For example, the flight leader can maintain bearing to his wingman when the wingman is transmitting a radio call. The R-800L1 radio can also be used to tune the ADF to any broadcasting station, such as the commercial «Radio Mayak» in Maykop city. The DCS player can load audio files into specially assigned folders to be played when he tunes the radio to the frequency and modulation setting of the broadcasting station.

Using the ABRIS AMMS, the pilot can select any radio station in the database to guide to or obtain more information on, including its code and ID. Using the ABRIS Options page, the player can assign the ABRIS RMI 1 and/or 2 needles on the ARC and HSI pages to display the radio beacon azimuth.

The SPU-9 intercom system provides audio and microphone transmission for the pilot. It can be set to UHF1 (R-828), UHF2 (R-800L1), KV (ADF and Marker Beacon), and NOP (ground link).

The R-828 radio is used for communication with combat ground units and is not part of the navigation equipment.

GPS/GLONASS

DCS: Black Shark features an expanded ground personnel and airfield tower radio communications menu. Having provided power to and properly configured the radios, the player can communicate with the ground crew to request payload changes, fuel loads, sighting devices (HMS or NVG), electric power to the aircraft, etc. The player can communicate with the tower to request permission for engine start, taxi, test hover, etc.

The DCS radio physics model calculates every transmission in real time and determines the local signal strength according to numerous variables, including time of day (ionosphere effect), surface type (rough terrain, paved surface, water, etc.), distance to transmitter, transmitter power, etc. Because radio traffic is carried «live,» reception can be interrupted at any point by either natural or artificial interference, such as terrain topology or radio configuration. For example, if the player changes his radio frequency, reception will cease, but can resume at its actual point upon reconfiguring the radio back to the transmitter's frequency. AI units react to radio calls only if transmission is successful.

The frequency configuration files allow the DCS player to configure the various frequencies used by in-game units, including own flight, tower, AWACS, etc.

Hydraulics

Hydraulics
  1. Main hydraulic system pressure indicator
  2. Common hydraulic system pressure indicator
  3. Servo actuators main-common hydraulics switch
  4. Servo actuators. Pitch and bank actuators, yaw actuator and collective actuator
  5. Moving gun hydraulic accumulators
  6. Moving gun stop lock
  7. Moving gun vertical actuator
  8. Moving gun horizontal actuator
  1. Moving gun
  2. Emergency gear selector switch
  3. Retract/Extend gear lever
  4. Left gear lock check valve
  5. Nose gear lock check valve
  6. Right gear lock check valve
  7. Left gear actuator
  8. Nose gear actuator
  9. Right gear actuator
  10. Right gear door actuator
  1. Left gear door actuator
  2. Brakes pressure indicator
  3. Left wheel brake actuator
  4. Right wheel brake actuator
  5. Brakes hydraulic accumulator
  6. Common system pump
  7. Common system tank
  8. Common system accumulator
  9. Main system pump
  10. Main system tank
  11. Main system accumulator

The Ka-50 hydraulic system is used to provide hydraulic power to various helicopter systems. This consists of two subsystems:

  • The main hydraulic system supplies the flight control servo actuators for pitch, bank, yaw and collective. In case of a common system failure, it also ensures emergency landing gear extension.
  • The common system supplies the landing gear extend/retract system, the main wheels brakes and cannon steering. In case of a main system failure, it supplies the flight control servo actuators.

Each system consists of a hydraulic pump, a hydraulic fluid tank, filters, valves, pipes and control elements. The pressure source for both systems is provided by variable displacement pumps. The main system's pump is mounted on the left accessory gearbox of the main gearbox, and it operates when the rotors are driven by the engines and also when in autorotation. The common system's pump is mounted on the aft accessory gearbox of the main gearbox, and it operates when the rotors are turning or when the APU is on.

There are hydraulic accumulators in each system to prevent pressure oscillations. In the brake system there is a separate accumulator to power the parking brakes (for up to 2 hours) after engines shut down, or power the brakes during taxi in case of a common system failure. The main system's tank has a capacity of 13 liters and the common system tank has a capacity of 17 liters.

Hydraulic system control is through fluid pressure and temperature indicators and the pressure switches. The indicators are located on the upper part of the cockpit control panel. The indicators include marks that specify the operating range of each indicator:

  • Main and common systems pressure indicators. Marks for 64 and 90 kgf/cm3
  • Accumulator pressure. Marks for 60 and 90 kgf/cm3.
  • Brake system pressure indicator. Marks for 0 and 22 kgf/cm3.
  • Systems fluid temperature indicators. Marks for -10°С and +90°С
  • Pressure operating range 65...90 kgf/cm3
  • Fluid temperature in flight no more than +85°С

Pressure switches are installed in:

  • Flight controls servo actuators to indicate pressure drop
  • Wheel brake system to indicate pressure drop in the accumulator
  • In the tanks pressurization line
FOLLOW US