Home Forum Links
English  Russian  German

DCS: Mi-8MTV2 Magnificent Eight


DCS: Mi-8MTV2 Magnificent Eight
Mi-8MTV2 - General Design and Mission Overview
Flight Model
3D Model and Liveries
Cockpit layout
Left Instrument Panel (Pilot-Commander)
Right instrument panel (Pilot-Navigator)
Center Console
Left Side Console
Left Triangular Panel
Left Overhead Console
Center Overhead Console
Right Overhead Console
Right Triangular Panel
Right Side Console
Right Rear Console
Left Circuit Breaker Console
Right Circuit Breaker Console
Flight Control System
Cyclic Control System
Collective Pitch Control System
Directional Control System
Force Trim System
Automatic Flight Control System (AFCS)
Engines and Powertrain Systems
Auxiliary Power Unit (APU)
Main Transmission
Intermediate Gearbox
Tail Rotor Gearbox
Rotor Brake
Air Cooling System
PKV Collimating Sight


Open big picture

DCS: Mi-8MTV2 Magnificent Eight is a highly realistic PC simulation of the Mi-8MTV2, a combat transport and fire support helicopter and an upgraded variant of one of the most widely produced helicopters in the world - the Russian Mi-8 (NATO reporting name ‘Hip'). Having serving in over 50 countries in a wide variety of models over the past 40 years, the Mi-8 is a revered veteran of countless military operations and civilian services around the world. Developed by Belsimtek and Eagle Dynamics, the team behind the hit title DCS: UH-1H Huey, DCS Mi-8MTV2 continues to deliver exceptional realism and immersive gameplay within the DCS World virtual battlefield.

The simulation features accurate modeling of all primary aircraft systems, avionics, and proper functionality of nearly all cockpit switches and controls. Flight and other dynamics are modeled using real-time physics calculations and carefully tuned using actual Mi-8MTV2 documentation and pilots deeply involved in development and testing. The result is not only the most realistic Mi-8 reproduction on the PC, but a comprehensive helicopter model that correctly presents complex dynamic effects particular to helicopter flight, such as: autorotation, vortex ring state (VRS), translational lift, and many others.

As part of the DCS World battlefield, you are placed in the cockpit of the Mi-8MTV2 to fly combat transport and support missions as the left pilot, right pilot or gunner. Equipped for close fire support, the helicopter can be armed with unguided rockets, gun pods, and on-board machine guns. In the transport role, a cargo of up to four tons can be carried internally or three tons on an external sling system to deliver and retrieve supplies in a wide variety of terrain and weather conditions. A series of single missions and a handcrafted, immersive campaign plunge you into the heat of battle in the DCS World battlefield of countless AI and a variety of player-controlled fighter and attack aircraft, helicopters, and ground units. Get online to play with or against other DCS players in a synthetic online battlefield.

A quickstart guide and interactive training help you get started quickly while the comprehensive Flight Manual details the helicopter's systems and operational procedures. A wide variety of gameplay options allows each player to tailor their difficulty level as required.

Key Features of DCS: Mi-8MTV2 Magnificent Eight include:

  • Unmatched flight physics providing the most realistic and dynamic conventional helicopter experience on the PC
  • Multiple player positions, including pilot, co-pilot, flight engineer, and door gunner
  • Accurate and highly detailed 3D cockpit featuring six-degrees-of-freedom technology compatible with head-tracking devices
  • Interactive cockpit controls that allow you to operate systems using the mouse
  • Accurate modeling of the Mi-8MTV2 instruments, weapons, engines, radios, fuel, electrical, and hydraulic systems
  • Highly detailed Mi-8MTV2 external 3D model, liveries, and weapons
  • Accurate audio environment based on custom Mi-8MTV2 sound samples
  • Immersive, handcrafted campaign with a variety of transport and fire support missions
  • Training with interactive and video lessons
  • Multiplayer coop mode for crew members of the same helicopter under development for a later update
  • Developed in close cooperation with actual Mi-8MTV2 operators

Mi-8MTV2 - General Design and Mission Overview

The Mi-8MTV2 is designed to enhance the mobility of ground forces and provide fire support on the battlefield.

The primary missions performed by the helicopter include:

  • Tactical air assault
  • Air mobility of ground forces
  • Transport of internal and external cargo
  • Destruction of ground targets on the forward edge of the battle area (FEBA) and within tactical depth, such as: infantry, lightly armored vehicles, anti-tank positions, artillery, radar and reconnaissance positions, anti-aircraft defense positions, forward command posts, helicopters and other aircraft positioned on the ground
  • Airborne reconnaissance
  • Airborne mine placement
  • Search and rescue
  • Medical evacuation

The internal and external payload of the helicopter can be configured as required to perform the above missions, including fitting of armament, additional fuel tanks, internal and externally slung cargo, medical stretchers, etc.

The helicopter can be operated in daytime or nighttime and under visual or instrument meteorological conditions.

The crew consists of three members: the Pilot-Commander, Pilot-Navigator, and Flight Engineer.

Principal dimensions:

Nose to vertical fin training edge18.424 m
With turning rotors25.352 m
Less tail rotor4.756 m
With turning tail rotor5.321 m
Clearance0.445 m
Main rotor:
Diameter21.294 m
Number of rotor blades5
Direction of rotationClockwise (viewed from above)
Tail rotor:
Typeuniversal joint
3.908 m
Direction of travelClockwise (viewed from port side)
Number of rotor blades3
Landing gear
Main wheel track4.510 m
Wheel base4.281 m
Static ground angle4°10'

DCS: Mi-8MTV2 Magnificent Eight

Performance characteristics:

Normal takeoff weight11,100 kg
Maximum takeoff weight13,000 kg
Cargo capacity:
Normal2,000 kg
Maximum (with full main fuel tanks)4,000 kg
21 – 24
Wounded on stretchers capacity12
Maximum level flight speed at altitudes of 0 - 1000 m:
Normal takeoff weight250 km/h
Maximum takeoff weight230 km/h
Cruising speed at altitudes of 0 - 1000 m:
Normal takeoff weight220–240 km/h
Maximum takeoff weight205–215 km/h
Hover ceiling with normal takeoff weight OGE (standard atmosphere)3,960 m
Service ceiling:
Normal takeoff weight5,000 m
Maximum takeoff weight3,900 m
Service range at an altitude of 500 m and cruising speed with full main fuel tanks until 5% fuel reserve:
With a payload of 2,117 kg495 km
With a payload of 4,000 kg465 km
With one full auxiliary fuel tank725 km
With two full auxiliary fuel tanks (ferry range)950 km

Flight Model

Helicopter velocity is determined using complete equations that calculate the forces and moments not only at the fuselage center of gravity (CG), but also acting on the turning rotors, which include the flapping motions of the rotor blades. This makes it possible to model all of the dynamic effects specific to helicopter flight.

The aerodynamic forces acting on the helicopter model are derived as a summation of the parameters of its individual elements: main and tail rotors, fuselage, vertical stabilizer, horizontal stabilizer, pylons, and undercarriage. Each of these elements is positioned and orientated individually within the airframe's local coordinate system and has its own aerodynamic characteristics.

The aerodynamic characteristics of each model element are pre-calculated with special software using numerical methods. In determining the forces and moments acting on the main and tail rotors, the calculations include the axial and longitudinal components of airflow speed, blade pitch, rotor angular velocities, airflow parameters, and blade inertia characteristics.

The aerodynamic forces acting on each model element are determined according to its pre-calculated characteristics in its own coordinate system. This includes local airflow velocity changes in the vicinity of the element as induced by other model elements.

Each element has a damage/destruction capacity that affects the lifting and center of gravity calculations of the model. Damage can be affected either by aerodynamic force or by physical contact with the ground or other objects. Ground and object contact is modeled using a system of rigid body points.

The detailed, real-time modeling of the dynamics involved with the main and tail rotors, fuselage, empennage, and other elements of the airframe produces flight characteristics that closely match those of the real helicopter and make it possible to naturally induce and closely model important flight conditions and effects like torque-induced yaw, translational lift, translating tendency, rotor overspeed and droop, retreating blade stall, autorotation, settling with power (vortex ring state), etc.

The Mi-8MTV2 simulation was developed under the management of an experienced Mi-8 pilot and with reference to a wealth of aircraft documentation and further testing by pilots and other subject matter experts to ensure the accuracy of the model's performance.

3D Model and Liveries

DCS: Mi-8MTV2 features an accurate and highly detailed 3D model of the helicopter using a 100,000+ triangle construction and a variety of historically accurate high resolution liveries. Multiple-texture maps, normal maps and specular maps are used to achieve a variety of special effects while skeletal animation is used to animate rotor blade flexing.

Open big picture

Open big picture

The main rotor assembly is fully animated and correctly translates movement of the cyclic and collective controls to the rotor system, making it possible to visually see rotor disc tilting, conning, and blade pitching.

Open big picture

Open big picture

The model includes extensive damage visualization that includes sector-based bullet/shrapnel penetration, canopy/window fracturing and penetration, and variety of partial or complete tearing of aircraft sections.

Open big picture


The development team was able to record actual Mi-8 audio in the field both inside and outside the cockpit under a variety of conditions specifically for this project. Many custom audio samples of actual Mi-8 sounds were taken in an effort to faithfully represent and immerse the player in the audio environment of the helicopter. Inside and outside the cockpit, the sound environment is filled with handcrafted audio that includes the main rotor, tail rotor, engine components, various cockpit switches and controls, and weapons.

A video of the team's field trip to record Mi-8 audio is available here: http://www.youtube.com/watch?v=yQY4TtjK0qk


DCS: Mi-8MTV2 features an accurately reproduced, highly detailed and interactive 3D cockpit with six-degrees-of-freedom ("6DOF") technology that allows the player to move the viewpoint in any direction inside the cockpit space. This means you can not only look up, down, left and right, but also raise or lower your viewpoint, slide to either side, move closer or further from the instrument panel, and even tilt left or right.

Open big picture

The cockpit includes the three standard crew positions of Pilot-Commander in the left seat, Pilot-Navigator in the right seat, and Flight Engineer in the center and slightly back.

Open big picture

Open big picture

Nearly all of the onboard systems of the helicopter are animated and functional, allowing the player to configure the systems in the cockpit by either using the mouse to click on the desired switches and controls or by using keyboard shortcuts that can be mapped to the player's control devices.

For low light/night operations, fully adjustable internal lighting is available and includes two flood lights and a number of panel and instrument light controls.

Cockpit layout

Open big picture
1. Left Side Console
2. Left Triangular Panel
3. Left Overhead Console
4. Left Circuit Breaker Console
5. Center Overhead Console
6. Right Circuit Breaker Console
7. Right Overhead Console
8. Right Triangular Panel
9. Right Side Console
10. Right Rear Console
11. Right Weapons Control Panel
12. Left Instrument Panel
13. Right Instrument Panel
14. Center Console
15. Right Auxiliary Panel
16. Rotor break handle
17. Collective control
18. Cyclic control
19. Pitot tube selector
20. Anti-torque pedals

Left Instrument Panel (Pilot-Commander)

DCS: Mi-8MTV2 Magnificent Eight
1. УР-117М (UR-117M) Engine Pressure Radio (EPR) indicator
2. ИП-21 (IP-21) main rotor pitch angle indicator
3. ИТЭ-2Т (ITE-2T) two-pointer engine tachometer indicator
4. ИТЭ-1Т (ITE-1T) main rotor tachometer indicator
5. УС-450К (US-450K) airspeed indicator
6. УВ-5M (UV-5M) radar altimeter indicator
7. ВД-10ВК (VD-10VK) pressure altimeter indicator
8. ОПБ-1Р (OPB-1R) bomb sight course indicator
9. УГР-4УК (UGR-4UK) heading indicator
10. АГБ-3К (AGB-3K) attitude indicator
11. Hover and low speed control indicator
12. ВР-30МК (VR-30MK) vertical velocity indicator
13. БСУП-2К (BSUP-2K) bearing indicator of the АРК-УД (ARK-UD) ADF
14. Annunciator (inoperative)
15. ЭУП-53 (EUP-53) turn indicator
16. "ОТКАЗ 6201" ("6201 FAIL") light
17. Annunciator panel
18. 2УТ-6К (2UT-6K) exhaust gas temperature indicator
19. Annunciator panel

1 2 3 4 5
Eagle Dynamics The Fighter Collection
ВКонтакт Facebook Google Plus Twitter Livejournal Liveinternet